
1720 IEEE TRANSACTIONS ON MAGNETICS, VOL. 45, NO. 3, MARCH 2009

Global Transformer Optimization Method Using Evolutionary Design and
Numerical Field Computation

Eleftherios I. Amoiralis�, Pavlos S. Georgilakis�, Marina A. Tsili�, and Antonios G. Kladas�

Department of Production Engineering and Management, Technical University of Crete, 73100, Greece
Faculty of Electrical and Computer Engineering, National Technical University of Athens, 15780, Greece

This paper addresses the complex optimum transformer design problem, which is formulated as a mixed-integer nonlinear program-
ming problem, by introducing an integrated design optimization method based on evolutionary algorithms and numerical electromag-
netic and thermal field computations. The main contributions of this research are: i) introduction of a new overall transformer opti-
mization method, minimizing either the overall transformer materials cost or the overall transformer materials and operating cost, ii)
expansion of the solution space by innovative techniques that define the variation of crucial design variables such as the conductors’
cross-section, ensuring global optimum transformer designs, and iii) incorporation of numerical field computation in order to validate
the feasibility of the optimum designs. The proposed method is compared with a heuristic optimization method of the transformer man-
ufacturing industry and the results demonstrate the robustness and the superiority of this new approach.

Index Terms—Design method, finite element method (FEM), mixed integer nonlinear programming, optimization methods, trans-
former.

I. INTRODUCTION

T HE difficulty in achieving the optimum balance between
the transformer cost and performance is becoming even

more complicated nowadays, as the main materials used in
transformer manufacturing (copper or aluminum for trans-
former windings, steel for magnetic circuit) are variable stock
exchange commodities and their prices are modified on a daily
basis. Techniques that include mathematical models employing
analytical formulas, based on design constants and approxi-
mations for the calculation of the transformer parameters are
often the base of the design process adopted by transformer
manufacturers [1].

The overall transformer manufacturing cost minimization is
scarcely addressed in the technical literature. On the other hand,
the main approaches deal with the minimization of specific
transformer cost components, such as the cost of magnetic
material [2], [3], or the active part cost [4].

This paper introduces the application of a mixed integer non-
linear programming (MINLP) in conjunction with the branch
and bound (BB) [5] technique to the overall transformer design
optimization, developing a novel implementation of MINLP
linked to finite element method (FEM). The novelties of the pro-
posed method can be categorized as follows: i) the deterministic
MINLP technique is successfully applied to the overall cost
minimization of transformer active part and mechanical part,
ii) crucial design variables such as the conductors’ cross-section
are added to the optimization algorithm and the solution space
is effectively enlarged and traversed through innovative imple-
mentation techniques, ensuring global optimum transformer
designs, and iii) both magnetic and thermal FEM are employed
for the overall design validation. The proposed method finds the
global optimum transformer design by minimizing either the
overall transformer materials cost (i.e., the transformer active
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part cost plus transformer mechanical part cost) or the overall
transformer materials and operating cost taking into account
proper loss evaluation factors, while simultaneously satisfying
all the constraints imposed by international standards and
transformer user needs, instead of focusing on the optimiza-
tion of only one parameter of transformer performance (e.g.,
no-load losses or short-circuit impedance). Using the proposed
technique, a user-friendly software package is developed that
combines transformer design with analysis, optimization and
visualization tools, useful for both design optimization and
educational purposes. The method is applied for the design of
distribution transformers of several ratings and loss categories
and the results are compared with a heuristic transformer design
optimization method (which is already used by the transformer
industry), resulting to significant cost savings.

II. PROPOSED METHODOLOGY

A. Mixed Integer Nonlinear Programming Method in
Combination With Branch and Bound Technique

Recently, the area of MINLP [5] has experienced tremendous
growth and a flourish of research activity. In the transformer
design optimization area, MINLP techniques are very suitable
and effective due to the fact that the design variables can as-
sume not only continuous values but also integer values (e.g.,
number of winding turns). In this context, this paper proposes
a BB optimization algorithm tailored to a MINLP formulation,
completing previous research [4]. MINLP refers to mathemat-
ical programming with continuous and discrete variables and
nonlinearities in the objective function and constraints. A gen-
eral MINLP can be written as

where is a vector of continuous variables and is a vector
of integer variables ( denotes the real numbers and de-

0018-9464/$25.00 © 2009 IEEE

Authorized licensed use limited to: National Technical University of Athens. Downloaded on October 2, 2009 at 05:33 from IEEE Xplore.  Restrictions apply. 



AMOIRALIS et al.: GLOBAL TRANSFORMER OPTIMIZATION METHOD 1721

notes the integers). The function is a scalar valued objective
function, while the vector functions and express linear or
nonlinear constraints.

BB algorithms for MINLP [6] constitute a well-known ap-
proach for solving combinatorial optimization problems to op-
timality. Essentially, BB techniques use an implicit enumera-
tion scheme for exploring the search space in an “intelligent”
way. This is done by partitioning the search space and pro-
ducing upper and lower bounds of the solutions attainable in
each partition. Thus, the search performed by the algorithm can
be represented as a tree that is traversed in a certain way. The
most efficient (in terms of the number of iterations required to
find the optimum and prove its optimality) is to use a depth-first
traversal.

The proposed recursive BB algorithm solves continuous
optimization problems, while constraining some variables into
sets of standard values, which may consist of discrete or integer
values. The associated discrete programming problem is re-
cursively divided into two sub-problems, by fixing the discrete
variables to the closest above and below standard values. The
search starts by solving a nonlinear programming (NLP) relax-
ation, and using the solution as the lower bound of the problem.
If the solutions of the discrete variables are all equal to the
values defined at the standard discrete set, then the optimum
solution is reached and the search is stopped. Otherwise, the
search branches on the first discrete variable that has non-stan-
dard solution. The closest discrete values above and below
the current solution are identified. If both above and below
values exist, the NLP with the fixed above values becomes the
first sub-problem. The first discrete variable with non-standard
solution is identified. Subsequently, a new equality constraint
to fix this variable to the above value is added to the original
constraints, and the NLP sub-problem subject to the updated
constraints is solved. If the NLP sub-problem converges, and
yields the superior solution over the existing lower bound, then
this solution becomes the new lower bound. The branching con-
tinues recursively to the next discrete value with non-standard
solution. Otherwise, the node is fathomed. If this happens, the
algorithm backtracks to the ascendant node, and then resumes
branching at the sub-problem associated with below values.

In this paper, the sequential quadratic programming (SQP)
method is proposed for solving transformer cost minimization
NLP sub-problems with BB [6], which enforces early detec-
tion and termination of infeasible or inferior NLP solutions. The
SQP implementation consists of three main stages: 1) at each
major iteration a positive definite quasi-Newton approximation
of the Hessian of the Lagrangian function is calculated using the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method, 2) at each
major iteration of the SQP method, a quadratic programming
problem is solved, and 3) the line search algorithm is a safe-
guarded cubic polynomial method, which requires fewer func-
tion evaluations but more gradient evaluations.

B. Finite Element Method

The MINLP solution is validated by a convenient FEM
technique. Magnetic FEM is used for transformer performance
parameters (no-load losses and short-circuit impedance) calcu-
lation [3], [7], while thermal FEM is used for the calculation

Fig. 1. Flowchart of the proposed technique.

of winding and core hottest spot temperature. If validation
fails, i.e., the deviation of the calculated losses and short-cir-
cuit impedance value from the prescribed values exceeds the
permissible tolerance, or the winding hottest spot temperature
overcomes the respective limit, the MINLP process is repeated
(Fig. 1). Validation through numerical field computation en-
hances the accuracy of the proposed method and eliminates the
possibility of infeasible optimum designs. The magnetic and
thermal analyses are based on a 3D model developed to provide
accurate solutions within limited execution times [7], suitable
for an optimization algorithm.

C. Problem Formulation

This section introduces the mathematical formulation of the
proposed method. This technique is integrated in Matlab envi-
ronment, using suitable graphical user interface (GUI).

The proposed method is shown in the flowchart of Fig. 1. The
14 transformer inputs (Fig. 1) concern design parameters, such
as rated power, vector group, voltages, etc., while the 12 MINLP
inputs (Fig. 1) comprise the upper/lower bounds and the initial
value of the design vector.

A MINLP for optimizing the transformer design is based on
the minimization of the overall transformer cost function

(1)

where and are the unit cost (euro/kg) and the weight (kg)
of each component (active and mechanical part, Fig. 1), and
is the vector of the four design variables, i.e., the number of low
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voltage turns, the magnetic induction magnitude , the width
of core leg and the core window height (Fig. 1).

The minimization of the objective function is subject to

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

where DNLL denotes the designed no-load loss (W), DLL
the designed load loss (W), DU the designed short-circuit
impedance (%), GNLL the guaranteed no-load loss (W), GLL
the guaranteed load loss (W), GU the guaranteed short-circuit
impedance (%), is the heat dissipated (by convection)
through the transformer cooling system (W), while
are the geometric characteristics of the active part (Fig. 1),
and and are matrices of lower and upper bounds
on . The coefficients appearing in (2)–(5) are based on the
tolerances specified by IEC 60076-1, while the respective co-
efficients in (6)–(9) are based on the transformer manufacturer
specifications.

Upon user selection, the transformer loss cost can also be in-
tegrated into (1) enabling to seek for the optimum design based
on the total owning cost (TOC), i.e., the transformer purchasing
cost plus the transformer operating cost

(12)

where CRM denotes the cost of the transformer remaining ma-
terials (euro), denotes the labor cost (euro), denotes the
transformer sales margin (%), denotes the equivalent no-load
loss cost rate (euro/W), and denotes the equivalent load loss
cost rate (euro/W). The strong point of the proposed software is
that the designer can define the loss evaluation factors ( and )
using 1) the IEEE standard method [9], 2) the simple yet effec-
tive industrial method of [10], or 3) his own admission, utilizing
the friendly and easy-to-use GUI. The fractional part of (12) is
called transformer bid price (BP).

One of the crucial design variables during the transformer
design optimization is the calculation of the conductors’
cross-section. The conductors’ cross-section derives from the
current density of the high voltage (HV) and low voltage (LV)
winding, which consist crucial design parameters, dependent
on the transformer rating and loss category. In the proposed
method, three new approaches are proposed with the aim of

Fig. 2. Average cost difference, i.e., the average difference between the costs of
the optimum transformer designs produced by the proposed method versus the
current method employed in the manufacturing industry, for each kVA category
considered in the study.

successfully defining the values of the HV and LV winding
current density (in A/mm ), denoted as and ,
respectively. At the first approach, the transformer designer
can define directly the value of the and . The
main drawback of this approach is that the transformer designer
should be quite experienced in order to correctly set this value
and direct the method to the optimal solution. At the second
approach, an interval with a set of discrete and values
for the LV and HV winding, respectively, can be defined. In this
case, the proposed method will calculate optimum
transformer designs, and finally will keep the best optimum
transformer design among them. Although this approach is
time-consuming, it assures a global optimum design. At the
third approach, the designer can increase the vector of the four
design variables into six. In particular, the correct definition
of the current density value is under the rules (supervision) of
the MINLP optimization method. In this way, the transformer
designer defines the initial, the upper and the lower value of
the and and the proposed method finds an
optimum transformer design, designating the values of the six
variables of the design vector .

III. RESULTS AND DISCUSSION

The robustness of the proposed method is presented in com-
parison with that of current method [1] that is already applied
in a transformer manufacturing industry. The proposed method
minimizes the overall transformer cost (1), subject to the con-
straints (2)–(11) by seeking the optimum settings of the four
design variables, namely, the core constructional parameters D
and G shown in Fig. 1 (continuous variables), the magnetic in-
duction (continuous variable), and the number of turns (integer
variable). Two more design variables can be optionally added:

and (continuous variables).
The proposed method has been applied in a wide spectrum

of actual transformers, of different voltage ratings and loss cat-
egories. In particular, 188 optimum transformer designs were
created and compared with the current method [1]. Fig. 2 depicts
the results. It should be noted that experiments were carried out
using constant and values (1st approach for
the current density determination, described in Section II-C) be-
cause the current heuristic technique [1] could not support the
other two approaches.
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TABLE I
DESIGN OPTIMIZATION RESULTS FOR THE 400 KVA TRANSFORMER USING

DIFFERENT CURRENT DENSITY DEFINITION METHODS

TABLE II
OPTIMIZATION RESULTS USING AS OBJECTIVE FUNCTION (1) AND (12)

As part of the results, the application of the method to a trans-
former of 400 kVA is reported ( W and

W, the rated primary and secondary voltages are 20/0.4 kV,
the vector group is Dyn11, the frequency is 50 Hz, and
and are both equal to 3 A/mm ), yielding optimum
design with an average cost saving of 1.46% (Table I) in com-
parison with the existing method [1]. Moreover, the second cur-
rent density determination method is used, defining variation of
the at discrete values of the [3 3.6] interval with step

and variation of the at discrete values
of the [3 3.6] interval with step . In this case,
the proposed method detects optimum transformer
designs and selects the most cost effective among them, corre-
sponding to an optimum cost of 3866 euro (Table I), i.e., 9.36%
cheaper than the optimum transformer of the current method
[1]. Finally, the third current density determination method of
Section II-C is applied by adding the and to
the design vector with upper and lower bounds corresponding to
the same intervals as the ones defined at the second approach,
resulting in an optimum transformer cost of 3954 euro (Table I),
i.e., 7.29% cheaper than the optimum transformer of the current
method [1]. Detailed results for each current density approach
are shown in Table I.

Finally, a comparison of the optimization results incorpo-
rating the transformer operating cost, using (12), has been con-
ducted, for the same case study of the 400 kVA transformer.

Table II shows the results of the proposed method using as ob-
jective function the (1) and (12). Although the use of (12) leads
to an optimum transformer where the costs of the eight materials
are euro more expensive than the transformer yielded by
the use of (1), its respective TOC is slightly cheaper. This differ-
ence relies on the transformer loss cost, rendering the optimiza-
tion of (12) a compromise between manufacturing and operating
cost.

IV. CONCLUSION

The proposed method is very effective because of its robust-
ness, its high execution speed and its ability to effectively search
the large solution space. The validity of this method is illustrated
by its application to a wide spectrum of actual transformers,
of different power ratings and losses, resulting to optimum de-
signs with an average cost saving of 1.60% in comparison with
the existing heuristic method used by a transformer manufac-
turer. This technique has proven to be reasonably efficient on
transformer design optimization problem. The development of
user-friendly software based on this method provides signifi-
cant improvements in the design process of the manufacturing
industry.
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